Explaining Legal Bayesian Networks Using Support Graphs
نویسندگان
چکیده
Legal reasoning about evidence can be a precarious exercise, in particular when statistics are involved. A number of recent miscarriages of justice have provoked a scientific interest in formal models of legal evidence. Two such models are presented by Bayesian networks (BNs) and argumentation. A limitation of argumentation is that it is difficult to embed probabilities. BNs, on the other hand, are probabilistic by nature. A disadvantage of BNs is that it can be hard to explain what is modelled and how the results came about. Assuming that a forensic expert presents evidence in a way that is either already a BN or expressed in terms that easily map to a simple BN, we may wish to express the same information in argumentative terms. We address this issue by translating Bayesian networks to arguments. We do this by means of an intermediate structure, called a support graph, which represents the variables from the Bayesian network, maintaining independence information in the network, but connected in a way that more closely resembles argumentation. In the current paper we test the support graph method on a Bayesian network from the literature. We argue that the resulting support graph adequately captures the possible arguments about the represented case. In addition, we highlight strengths and limitations of the method that are revealed by this case study.
منابع مشابه
Characterization of Essential Graphs by Means of an Operation of Legal Component Merging
One of the most common ways of representing classes of equivalent Bayesian networks is the use of essential graphs. These chain graphs are also known in the literature as completed patterns or completed pdags. The name essential graph was proposed by Andersson, Madigan and Perlman (1997a) who also gave a graphical characterization of essential graphs. In this contribution an alternative charact...
متن کاملApplication of n-distance balanced graphs in distributing management and finding optimal logistical hubs
Optimization and reduction of costs in management of distribution and transportation of commodity are one of the main goals of many organizations. Using suitable models in supply chain in order to increase efficiency and appropriate location for support centers in logistical networks is highly important for planners and managers. Graph modeling can be used to analyze these problems and many oth...
متن کاملQualitative Chain Graphs and their Use in Medicine
For modelling diseases in medicine, chain graphs are more attractive than directed graphs, i.e., Bayesian networks, as they support representing interactions between diseases that have no natural direction. In particular, representation by chain graphs is preferred over Bayesian networks as they have the ability to capture equilibrium models. Using qualitative abstractions of probabilistic inte...
متن کاملRepresenting the Quality of Crime Scenarios in a Bayesian Network
Bayesian networks have gained popularity as a probabilistic tool for reasoning with legal evidence. However, two common difficulties are (1) the construction and (2) the understanding of a network. In previous work, we proposed to use narrative tools and in particular scenario schemes to assist the construction and the understanding of Bayesian networks for legal cases. We proposed a constructi...
متن کاملA two-phase method for extracting explanatory arguments from Bayesian networks
Errors in reasoning about probabilistic evidence can have severe consequences. In the legal domain a number of recent miscarriages of justice emphasises how severe these consequences can be. These cases, in which forensic evidence was misinterpreted, have ignited a scientific debate on how and when probabilistic reasoning can be incorporated in (legal) argumentation. One promising approach is t...
متن کامل